The Goldsmith Lab
  • Home
  • People
  • Ecology & Education
  • Publications
  • Thoughts

A Place For Occasional Thoughts

-------------------------------------------------------------------------------

The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests

1/12/2015

0 Comments

 
I am a co-author on a new paper that is in press at Global Change Biology. The paper explores how landscape level patterns in precipitation and soil drive differences in the carbon cycle of lowland Amazon forests. I'll write more on this soon, but in the interim, you can check out the layperson's abstract and access the full text through the link at the bottom: 

Understanding the relationship between photosynthesis, net primary productivity and growth in forest ecosystems is key to understanding how these ecosystems will respond to global anthropogenic change, yet the linkages among these components are rarely explored in detail. We provide the first comprehensive description of the productivity, respiration and carbon allocation of contrasting lowland Amazonian forests spanning gradients in seasonal water deficit and soil fertility. Using the largest dataset assembled to date, ten sites in three countries all studied with a standardized methodology, we find that (i) gross primary productivity (GPP) has a simple relationship with seasonal water deficit, but that (ii) site-to-site variations in GPP have little power in explaining site-to-site spatial variations in net primary productivity (NPP) or growth because of concomitant changes in carbon use efficiency (CUE), and conversely, the woody growth rate of a tropical forest is a very poor proxy for its productivity. Instead, (iii) spatial patterns of biomass are much more driven by patterns of residence times (i.e. tree mortality rates) than by spatial variation in productivity or tree growth. Current theory and models of tropical forest carbon cycling under projected scenarios of global atmospheric change can benefit from advancing beyond a focus on GPP. By improving our understanding of poorly understood processes such as CUE, NPP allocation and biomass turnover times, we can provide more complete and mechanistic approaches to linking climate and tropical forest carbon cycling.


Malhi, Y. C.E. Doughty, G.R. Goldsmith, D.B. Metcalfe, C.A.J. Girardin, T.R. Marthews, J. del Aguila-Pasquel, L.E.O.C. Aragão, A. Araujo-Murakami, P. Brando, A.C.L. da Costa, J.E. Silva-Espejo, F.F. Amézquita, D.R. Galbraith, C.A. Quesada, W. Rocha, N. Salinas-Revilla, D. Silvério, P. Meir & O.L. Phillips. 2015. The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests. Global Change Biology DOI: 10.1111/gcb.12859



0 Comments

Your comment will be posted after it is approved.


Leave a Reply.

    Archives

    September 2022
    July 2022
    April 2022
    March 2022
    August 2021
    May 2021
    February 2021
    December 2020
    August 2020
    July 2019
    March 2019
    November 2018
    March 2018
    January 2018
    November 2016
    October 2016
    September 2016
    June 2016
    May 2016
    April 2016
    February 2016
    January 2016
    August 2015
    July 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    July 2014
    May 2014
    March 2014
    February 2014
    November 2013
    September 2013
    August 2013
    July 2013

    Categories

    All
    Altmetrics
    Amazon
    Clean Water
    Conservation
    Deforestation
    Ecohydrology
    Google Trends
    Meteorology
    Plant Ecophysiology
    Science Communication
    Smartphones
    Stable Isotopes
    Technology And Innovation
    Tropical Ecology

    RSS Feed

Powered by Create your own unique website with customizable templates.